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Abstract Cognitive reserve (CR) shows protective effects in
Alzheimer’s disease (AD) and reduces the risk of dementia.
Despite the clinical significance of CR, a clinically useful
diagnostic biomarker of brain changes underlying CR in AD
is not available yet. Our aim was to develop a fully-automated
approach applied to fMRI to produce a biomarker associated
with CR in subjects at increased risk of AD. We computed
resting-state global functional connectivity (GFC), i.e. the av-
erage connectivity strength, for each voxel within the cogni-
tive control network, which may sustain CR due to its central
role in higher cognitive function. In a training sample includ-
ing 43 mild cognitive impairment (MCI) subjects and 24

healthy controls (HC), we found that MCI subjects with high
CR (> median of years of education, CR+) showed increased
frequency of high GFC values compared to MCI-CR- and
HC. A summary index capturing such a surplus frequency of
high GFC was computed (called GFC reserve (GFC-R) in-
dex). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with
the area under the ROC = 0.84. Cross-validation in an inde-
pendently recruited test sample of 23 MCI subjects showed
that higher levels of the GFC-R index predicted higher years
of education and an alternative questionnaire-based proxy of
CR, controlled for memory performance, gray matter of the
cognitive control network, white matter hyperintensities, age,
and gender. In conclusion, the GFC-R index that captures
GFC changes within the cognitive control network provides
a biomarker candidate of functional brain changes of CR in
patients at increased risk of AD.
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Introduction

Cognitive reserve (CR) refers to the ability to cognitively per-
form relatively well in the presence of brain pathology (Stern
2002, 2009). Life-time experiences - such as education and
occupational attainment – or IQ are commonly used as proxy
measures of CR (Stern 2009). In Alzheimer’s disease (AD),
higher levels of such CR proxies are associated with higher
cognitive performance relative to the level of brain damage,
such as measured by cerebral FDG-PET hypometabolism or
impaired blood flow (Bastin et al. 2012; Boots et al. 2015;
Ewers et al. 2014; Scarmeas et al. 2003; Stern et al. 1992,
1995), grey matter atrophy (Bastin et al. 2012; Boots et al.
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2015), white matter damage (Brickman et al. 2011), and pri-
mary pathologies including amyloid-beta (Aβ) and tau (Rentz
et al. 2010; Vemuri et al. 2011, 2015). These results suggest
that higher levels of CR as measured by education and other
proxies are associated with a higher ability to cope with brain
pathology in AD.

Compensatory functional brain changes that may underlie
CR have been investigated in a number of task-related fMRI
studies (Stern et al. 2005, 2008) or resting-state fMRI studies in
HC subjects (Arenaza-Urquijo et al. 2013). Task-related fMRI
studies in MCI and AD revealed an association between in-
creased CR proxies (education, occupation) and higher brain
activation (Bosch et al. 2010; Solé-Padullés et al. 2009).
However, task-fMRI is often difficult to perform for cognitive-
ly impaired patients, and may thus not be suitable for clinical
use to assess CR in AD. From a clinical point of view, a major
question is whether simple measures of basic brain function are
indicative of CR, and thus could be used as a marker of CR-
related brain changes in AD. The need of a biomarker of CR-
related brain changes is urgent in view of a growing number of
clinical trials that target protective brain mechanisms in AD,
such as cognitive training or meditation (Buschert et al. 2011;
Reijnders et al. 2013; Schultz et al. 2015; Wells et al. 2013).

The overall goal of the current study was to develop a
neuroimaging-based diagnostic biomarker of functional brain
changes underlying CR in subjects with mild cognitive im-
pairment (MCI). We specifically chose a sample of MCI sub-
jects since CR-related functional brain changes maymost like-
ly become apparent at a stage of emerging brain pathology,
such as in MCI (Stern 2002). We focused on resting-state
global functional connectivity (GFC, also known as weighted
degree centrality) within the cognitive control network as a
measure of functional brain processes of CR. The rationale for
selecting the cognitive control network to subserve CR is
based on its’ link to CR proxies (Cole et al. 2012), its’ task-
invariant role in cognition (Cole et al. 2013), and its’ sug-
gested compensatory function in early AD (Elman et al.
2014; Oh et al. 2015). The cognitive control network includes
major brain hubs with high GFC (Cole et al. 2010), where
greater GFC has been previously associated with higher IQ,
i.e. a proxy of CR, in young subjects. In the current study, CR
was measured by the proxy of years of education, which is the
best validated CR proxy measure to date in AD (Stern 2012).

Using a cross-validation approach, we compared the fre-
quency distribution of GFC values within the cognitive con-
trol network between MCI subjects with high CR (more years
of education) to MCI with low CR (lower years of education)
and HC groups. A newly developed summary index that de-
tects GFC frequency differences between MCI subjects with
low and MCI subjects with high CR, henceforth called GFC
reserve (GFC-R) index, was tested as a marker of CR in an
independent validation sample of MCI subjects. We hypothe-
sized firstly that MCI subjects with more years of education

show an increased number of relatively high GFC values
within the cognitive control network compared to MCI sub-
jects with less years of education. Secondly, we hypothesized
that higher levels of the GFC-R index are predictive of more
years of education and a second questionnaire based CR proxy
in the validation sample of MCI subjects. Thirdly, we hypoth-
esized that the GFC-R index is specifically related to CR
proxies and not driven by pathological brain changes such as
amyloid-beta deposition, cerebral small vessel disease or grey
matter atrophy.

Methods

Subjects

We included two independent samples each of amnestic MCI
and HC subjects to cross-validate our findings. The training
sample included 24 amyloid-PET negative (Aβ-) HC subjects
and 43 Amyloid-PET positive (Aβ+) patients with amnestic
MCI. Amyloid PET status was defined based on pre-
established cut-off values of global [18F] AV-45 PET standard-
ized uptake value ratio (for Aß- = global AV-45 PET SUVR<
1.11) (Landau et al. 2013). All data were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base, freely accessible for researchers (http://adni.loni.usc.
edu/). ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure and predict the
progression of MCI and early AD (www.adni-info.org).

The test sample comprised 32 HC subjects as well as 23
subjects with amnestic MCI, recruited between 2014 and
2015 at the memory clinic of the Institute for Stroke and
Dementia Research (ISD) at the Klinikum der Universitaet
Muenchen in Germany.

For the ISD study, the inclusion criteria were defined
as follows: 1) age >60 years, 2) no signs of depression, 3)
no presence or history of neurological or psychiatric dis-
orders (except for MCI), 4) no presence or history of
alcohol or drug abuse, 5) no diabetes mellitus, 6) no
MRI contraindications. All subjects underwent structural
MRI, resting-state fMRI and cognitive testing using the
CERAD-Plus test battery (Luck et al. 2009). A subject
was defined as HC, when reporting no subjective memory
complaints and scoring within 1.5 standard deviations
(SD) of the age, gender and education adjusted norms in
all subtests of the CERAD-Plus battery (Luck et al. 2009).
MCI was diagnosed according to the Petersen criteria
(Petersen 2004), when scoring 1.5 SD below the age,
gender and education adjusted norms in at least one of
the learning or recall subtests of the CERAD-Plus battery.
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For the training sample (ADNI), details about the inclusion
can be found online (https://adni.loni.usc.edu/wp-
content/uploads/2008/07/adni2-procedures-manual.pdf).
Similar to the diagnosis of MCI in the ISD sample, MCI was
diagnosed in ADNI according to the Petersen criteria
(Petersen 2004).

Cognitive reserve and neuropsychological assessment

The number of years of formal education was used as a proxy
for CR in both samples. In the test sample (ISD)we additionally
used the cognitive reserve index questionnaire (Nucci et al.
2012) as a second proxy of CR. The CRIq is a standardized
questionnaire based measure for the assessment of CR that
combines information about education, working activity and
leisure time. For neuropsychological assessments, memory per-
formance was assessed using memory tests that were compara-
ble between the ADNI and the ISD sample. As a measure of
episodic memory performance, the total score of the CERAD
word list learning tests was assessed in the ISD sample (Luck
et al. 2009), and the total score of the Rey Auditory Verbal
Learning Test (RAVLT) in the ADNI sample (Schoenberg
et al. 2006). Both tests are designed as list-learning paradigms
in which the patient is read a list of words by the examiner in
several trials (CERAD: 10 words in 3 trials; RAVLT: 15 words
in 5 trials) and is asked to recall as many words from the list as
possible after each trial. The total score reflects the number of
words correctly remembered cumulated across trials.

MRI acquisition

Training sample (ADNI)

All MRI scans were performed on Philips 3 T MRI scanners,
using an 8-channel headmatrix coil. High-resolution T1-weight-
ed scans were acquired using a 3D MP-RAGE sequence, with
whole brain coverage and a voxel resolution of 1 × 1 × 1.2 mm.
Fluid attenuated inverse recovery (FLAIR) scans were obtained
with a voxel resolution of 0.86 × 0.86 × 5 mm. Resting-state-
fMRI images were acquired using a single shot T2*-weighted
EPI sequence collecting 140 volumes, with a TR of 3000 ms, a
flip angle of 80° and 3.3 mm isotropic voxel resolution. Prior to
the resting-state scan, subjects were instructed to keep their eyes
open.

Test sample (ISD)

All MRI scans were performed on a Siemens Verio 3 T MRI
scanner using a 32-channel head coil. For each subject a struc-
tural image was obtained using a high-resolution 3D
MPRAGE T1-weighted sequence with 1 mm isotropic voxel
resolution. Using the same field of view and voxel dimensions
FLAIR images were recorded. Functional resting-state images

were acquired using a T2*-weighted echo-planar imaging
(EPI) pulse sequence collecting 180 volumes with a TR =
2580 ms, flip angle = 80° and 3.5 mm isotropic voxel resolu-
tion. Prior to the resting-state scan the subjects were instructed
to keep their eyes closed and not to fall asleep during the
scanning procedure. Using the same field of view as the func-
tional resting-state images, field maps were acquired (TE =
7.38/4.92 ms, TR = 675 ms) to correct for susceptibility arti-
facts and inhomogeneity of the magnetic field during prepro-
cessing of the resting-state data.

Spatial normalization of MRI scans

The spatial normalization of the MRI scans was done sepa-
rately for both samples, following the same protocol of image
processing based on SPM 12 (Wellcome Trust Centre for
Neuroimaging, University College London, United
Kingdom: www.fil.ion.ucl.ac.uk/spm). T1-weighted images
were segmented into probabilistic maps of grey matter, white
matter and cerebrospinal fluid maps through the SPM’s new-
segment approach (Ashburner and Friston 2005). Next, the
spatial normalization parameters were estimated using a
high-dimensional diffeomorphic registration algorithm to
warp each subjects’ grey matter map to a group-specific grey
matter template that was defined in an iterative procedure, as
implemented in SPM’s DARTEL toolbox (Ashburner 2007).
Subsequently, the group-specific template was registered to
the MNI template in order to estimate the affine transforma-
tion parameters. Next, the non-linear (DARTEL flow-fields)
and the affine transformation parameters were combined and
applied to the segmented grey matter maps, so that all grey
matter images were spatially normalized to the MNI space.
The spatially-normalized grey matter maps were averaged
and binarized at a voxel value >0.3 to create a group-
specific grey matter mask for later fMRI functional connec-
tivity analyses. Similarly, we averaged and binarized the
spatially-normalized white-matter (binarized at threshold
>0.9) and cerebrospinal-fluid (binarized at threshold >0.7) that
were used during preprocessing of the resting-state fMRI data.
For later extraction of grey matter volume, we created spatial-
ly normalized grey matter maps for each subject, that were
smoothed with a 8-mm full-width at half-maximum
(FWHM) Gaussian kernel and modulated to preserve the vol-
ume of the images.

WMH volume assessement

The assessement of WMH volume was conducted separately
for both samples but following the same protocol. In a first
step, FLAIR images were registered to the T1-weighted im-
ages and segmented into three tissue-probability maps.
Subsequently, a histogram-segmentation (Otsu 1979) was
conducted to separate WMH from confounding cerebrospinal
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fluid voxels. The resulting WMH segmentations were manu-
ally edited by two independent raters in order to remove
voxels that were misclassified as WMH. The inter-rater reli-
ability of the WMH assessment yielded a Dice coefficient of
0.98. For each subject, WMH volume was computed as the
volume of WMH divided by the total brain volume.

Preprocessing of resting-state fMRI

The preprocessing of both samples was done separately, but
following the same protocol. The first 10 volumes of each
subjects’ resting-state scan were discarded to allow for equil-
ibration of the magnetic field. All remaining volumes were
realigned to the first volume to correct for motion,
coregistered to native-space T1-weighted images and
smoothed using an 8 mm FWHM Gaussian kernel. None of
the subjects’ motion parameters exceeded 2 mm translations
or 2° rotations. For the ISD-sample, there was additional slice-
timing and field map correction. Next, the DARTEL flow-
fields and affine registration parameters that were estimated
during preprocessing of the T1-weighted images were com-
bined and applied to all resting-state fMRI volumes to spatial-
ly normalize the images to MNI space. The spatially normal-
ized fMRI images were further detrended and band-pass fil-
tered, using a frequency band of 0.01–0.08 Hz. In a second
step we regressed out the 6 motion parameters (3 translations,
3 rotations) and the BOLD signal averaged across the white
matter and cerebrospinal fluid masks that were created during
preprocessing of the T1-weighted images.

Assessment of GFC

For each subject, GFC was determined based on the
preprocessed and spatially normalized resting-state fMRI
scans, following a previously established protocol (Cole
et al. 2012). For each voxel in the grey matter, the GFC was
determined by computing seed-based Pearson-Moment corre-
lations of the BOLD signal changes between the seed voxel
and each of the other voxels within the grey matter (as defined
by the customized grey matter mask). For each seed voxel,
only Pearson-Moment correlation coefficients with r >0 were
retained, Fisher z-transformed and averaged across the voxels
within the grey-matter-mask space to obtain the GFC coeffi-
cient. This resulted in a 3D brain map of GFC coefficients for
each subject. Note that we included only positive correlation
coefficients for computing the GFC, because positive and
negative correlations may cancel each other out when averag-
ing the correlation coefficients. More precisely, if a voxel
shows high positive connectivity to brain area A and high
negative connectivity to brain area B, averaging both values
would result in a small if not zero correlation coefficient,
which would be falsely interpreted as low connectivity.

Thus, in line with a previous study (Cole et al. 2012), we
focused on positive connectivity values only.

Spatial maps of resting-state networks

The cognitive control network covers the anterior cingulate
cortex, dorsolateral prefrontal cortex, anterior insular cortex,
dorsal premotor cortex and posterior parietal cortex (Cole
et al. 2013, 2014a; Cole and Schneider 2007). For the current
study, we determined the spatial boundaries of the cognitive
control network based on an a-priori conducted meta-analysis
in order to avoid a sample specific bias in the spatial definition
of the network. The meta-analysis was conducted using
NeuroSynth, a web-based tool for fully automated detection
of brain activation coordinates from published task-fMRI data
(http://www.neurosynth.org). By entering a search term in the
NeuroSynth database, brain activation associated with the
search term entered is analyzed across studies, yielding a
probabilistic map of brain activation related to that term
(Yarkoni et al. 2011). For the current study, we used
Bcognitive control^ as a search term, yielding a z-scored prob-
ability map based on 428 task-fMRI studies (as of September
14, 2015). In order to obtain a reliable map of the cognitive
control network we applied a false discovery rate corrected p-
threshold of p(FDR) <0.01 (see Fig. 1). The spatial map of the
cognitive control network was additionally masked with the
group-specific grey matter masks for each sample separately in
order to restrict all further analyses to voxels that had a high
likelihood of fallingwithin the greymatter.We performed control
analyses on 7 major brain networks (Yeo et al. 2011), to test
whether a relationship between CR and GFC was specific to
the cognitive control network. Accordingly, we downloaded
the 7 network parcellations that are freely available online

Fig. 1 Meta-analytical activation map across 428 task-fMRI studies that
were associated with search term Bcognitive control^ (FDR-corrected at
p < 0.01) in NeuroSynth, projected on a brain surface. Colors indicate z-
scores
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(ftp://surfer.nmr.mgh.harvard.edu/pub/data/Yeo_JNeuro
physiol11_MNI152.zip). Again, all 7 networks were additionally
masked with the group specific grey matter masks for each
sample. To control for potentially confounding effects of brain
atrophy, we extracted the grey matter volume within the network
masks for each subject, applied to the modulated smoothed and
normalized grey matter images that were created during the
preprocessing of structural MRI images.

Generation of GFC index related to CR (GFC-R index)

Study design

Our aim was to develop a summary index to quantify GFC
frequency changes within the cognitive control network that
were associated with the CR proxy years of education in pa-
tients with MCI. In brief, the ADNI sample served as a train-
ing sample to create the GFC-R index that is related to our CR
proxy education. Subsequently, we tested the validity of this
GFC based index as a predictor of the CR proxy years of
education and the CR-questionnaire (CRIq) composite score
in the ISD sample, which served as an independent test sam-
ple. A Flow diagram illustrating the individual steps to create
the GFC-reserve index is shown in Fig. 2.

Dichotomization of subjects according to CR

The HC and MCI groups were each dichotomized into groups
of low and high CR (CR− vs CR+), split at the median of
years of education within the entire sample. The groups were
dichotomized separately within the ISD (CR+: > median ed-
ucation = 13) and the ADNI sample (CR+: > median
education = 16).

Histogram analysis of GFC

For each diagnostic group (MCI vs. HC) within the CR+
and CR- subjects, we plotted a histogram of the GFC
frequencies across voxels of the cognitive control network
(Fig. 2a and b). Visual inspection of the histograms in the
training sample (ADNI) revealed, that the GFC histogram
of the MCI CR- subjects showed an overall shift to the
left of the HC subjects, with a decreased frequency of
relatively high GFC values, but an increase of lower
GFC values compared to the HC CR- group (Fig. 2b).
Conversely, the GFC histogram of the MCI CR+ subjects
showed a shift to the right of the HC CR+ group.

In a next step, we binned the GFC voxel values for each
subject at intervals of 0.01 from z = 0 to z = 0.6 resulting in a
total of 60 bins, each containing the number of voxels (i.e. the
GFC frequency) falling within that bin. To quantify changes in
GFC frequency in MCI with respect to the HC group, we bin-
wise subtracted each MCI CR+ subject’s GFC frequencies

from the averaged GFC frequencies in the HC CR+ group.
The analogous subtraction was done for the MCI CR-, where
each MCI subject’s histogram was subtracted from the aver-
age histogram of the HC CR- group. Thus, for each MCI CR
group, alterations of GFC frequencies (called GFC-Diff,
Fig. 2c) were obtained according to the following equation.

GFC−Dif f i jk ¼ GFC frequency MCIð Þi jk−MeanGFC frequency HCð Þik ð1Þ

where, i = CR group (CR + or CR-), j =MCI subject, k = GFC
bin (1–60).

In bins where a MCI subject had a higher GFC frequency
than the HC group, GFC-Diff values were positive (green shad-
ed area in Fig. 2c–e). Conversely, in bins where a MCI subject
showed a lower GFC frequency compared to the HC group, the
GFC-Diff score was negative (red shaded area in Fig. 2c–e). To
identify GFC bins where MCI CR+ and MCI CR- subjects
showed different GFC frequency changes, we compared
GFC-Diff scores between the CR groups for each of the 60
bins, using two-sample t-tests with the significance threshold
being α = 0.05 for each t-test (Fig. 2d). We did not correct for
multiple testing at this stage, since the analysis was an interme-
diate step, exclusively done in order to select bins where MCI
CR- and MCI CR+ groups differed in terms of GFC-Diff.

The results of the t-tests showed that GFC-Diff scores were
greater (i.e. more positive) in MCI CR+ compared to MCI
CR- in the range from 0.34 to 0.5, suggesting that MCI CR+
had significantly increased frequencies of relatively high GFC
values (henceforth referred to as GFC-DiffCR+>CR-) relative to
MCI CR- subjects. In contrast, GFC-Diff scores were in-
creased in MCI CR- compared to MCI CR+ subjects in a
range from 0.2 to 0.26, suggesting that MCI CR- subjects
had a higher frequency of relatively low GFC values (hence-
forth referred to as GFC-DiffCR+<CR-) compared to MCI CR+
subjects. In order to create a subject-specific summary score of
GFC frequency differences indicative of CR+ status, we
subtracted the sum of GFC-Diff values in the GFC-DiffCR+
<CR-from the sum of GFC-Diff values in the GFC-DiffCR+
>CR-. Finally, this differences was divided by the total number
of voxels in the cognitive control network mask to standardize
it to a range between −1 and 1 (Fig. 2e and f, Eq. 2).

GFC‐Rindex j ¼
X

GFC‐Dif f CRþ>CR−−
X

GFC‐Dif f CRþ<CR−

Numberof voxels inmask
ð2Þ

where j = subject
This coefficient was then used as our GFC-R index. A

negative GFC-R index indicates an increased GFC frequency
in GFC-DiffCR+<CR- and a simultaneous decrease in GFC-
DiffCR+>CR-, i.e. a MCI CR- characteristic pattern.
Conversely a positive GFC-reserve indicates an increased
GFC frequency in GFC-DiffCR+>CR- and a decreased frequen-
cy in GFC-DiffCR+<CR-, a pattern that was typically seen in
MCI CR+.
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Fig. 2 Analysis flow diagram,
illustrating the steps of GFC-R
index computation. a Voxel-wise
GFC is computed based on
preprocessed resting-state fMRI
for each subject and masked with
the binarized cognitive control
network map. b The GFC
frequency distribution within the
cognitive control network is
plotted for groups split by
diagnosis (HC & MCI) and CR
status (CR− & CR+). c GFC
within the cognitive control
network is binned in intervals of
0.01 for each subject. Within each
CR group, the difference in GFC
differences (GFC-Diff) between
each MCI subject and the average
GFC within the HCs group is are
computed. Colored areas indicate
whether MCI subjects showed
lower (red) or higher (green) GFC
frequency than the HC subjects. d
GFC-Diff scores are compared
between MCI CR+ and MCI
CR- groups via bin-wise
two-sample t-tests. e GFC-Diff
scores are summed up across the
selected bins for each MCI
subject. In order to create a
subject-specific summary score of
GFC frequency differences
indicative of CR+ status, the sum
of GFC-Diff values in the
GFC-DiffCR+<CR-was subtracted
from the sum of GFC-Diff values
in the GFC-DiffCR+>CR-. f This
differences was divided by the
total number of voxels in the
cognitive control networkmask to
standardize it to a range between
−1 and 1 to derive the GFC-R
index for each MCI subject
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All steps described above were conducted also for the
test sample (ISD). Supplementary Figure 1 is showing –
equivalent to Fig. 2b - the distribution of GFC voxels
averaged across subjects within CR and diagnostic (MCI
vs. HC) groups. When conducting the t-tests to compare
the GFC-Diff values between MCI CR+ and MCI CR-,
we found GFC-DiffCR+<CR- in a range from 0.2 to 0.22
(vs. 0.2–0.26 in the training sample) and the GFC-DiffCR+
>CR- in a range from 0.29 to 0.41 (vs. 0.34–0.5 in the
training sample). The GFC-DiffCR+<CR- fully overlapped
between both samples, whereas the GFC-DiffCR+>CR- only
partly overlapped. For our validation analysis, we used
the GFC-DiffCR+>CR- and GFC-DiffCR+<CR- ranges de-
rived from the training sample to compute the GFC-R
index in the test sample. All above delineated steps were
conducted accordingly for 7 major brain networks derived
from a previous publication to control whether a relation-
ship between CR and GFC was specific for the cognitive
control network. Again, GFC-DiffCR+>CR- and GFC-
DiffCR+<CR- ranges were assessed in the training sample
and used to create the GFC-R index in the test sample.
The histogram analysis was conducted fully-automated
using in-house MATLAB scripts.

Statistical analysis

Demographic variables were compared between groups using
t-tests for continuous variables and χ2-test for gender.

In order to test whether the GFC-R index differed between
MCI CR+ vs. MCI CR- groups in the training sample, we
conducted an ANCOVA, with group as the predictor, and age,
gender, the global AV45 uptake, the grey matter volume within
the cognitive control network, WMH volume and the learning
score of the RAVLT as covariates. To evaluate how accurately
the GFC-R index classified between MCI CR+ and MCI CR-
subjects we performed a Receiver Operating Characteristic
(ROC) Curve analysis. Prediction accuracy was quantified
using the area under the curve (AUC). The 95 % Confidence
interval (CI) for each ROC was computed with 2000 stratified
bootstrap replicates for each ROC analysis. Equivalent models
were run in the test sample, with the exception of AV45 PET
uptake, which was not available in the ISD test sample.

Lastly, we tested whether the GFC-R index predicted the
CR proxies (years of education, CRIq) in the MCI subjects of
the test sample (pooled across CR+ and CR-). To this end we
conducted a multiple regression analysis, with the GFC–R
index as a predictor of years of education or the CRIq, con-
trolled for age, gender, WMH volume, the learning score of
the CERAD and the total grey matter volume within the cog-
nitive control network. For the ADNI sample, the association
between the continuous AV-45 PET measure, WMH volume
and GFC-R was tested in the MCI subjects (who were by
definition of the inclusion criteria all AV-45 PET positive).

We conducted a linear regression analysis, with WMH vol-
ume and AV45 uptake as independent variable and the GFC-R
index as dependent variable, and age, gender, the RAVLT
learning score and grey matter volume as nuisance covariates.
An equivalent model was run for the ISD sample with the
exception that AV45 was not available and that the CERAD
word list learning score was entered as a covariate. To test
whether the GFC-R index was related to cognitive perfor-
mance, we applied linear regression, with the RAVLT learning
score (ADNI) or the CERADword list learning score (ISD) as
a dependent variable and the GFC-R index as an independent
variable, controlling for age, gender, as well as WMH volume
and grey matter volume of the cognitive control network.
Next, we tested whether our findings on the GFC-R for the
prediction of years of education were specific for the cognitive
control network. Thus, the regression analyses on GFC-R
were repeated for each GFC-R index derived on the GFC
frequencies in one of 7 major functional brain networks (i.e.
Default Mode Network (DMN), Visual Network,
Somatomotor Network, Dorsal Attention Network (DAN),
Ventral Attention Network (VAN), Limbic Network,
Frontoparietal Network (FPAN)) (Yeo et al. 2011).

All statistical analyses were conducted using the statis-
tical software package R (R Development Core Team
2013). Linear models were computed using the lm com-
mand in R. Linear model assumptions (skewness, kurto-
sis, heteroscedasticity) were tested using the gvlma func-
tion implemented in R. For all models reported, no signif-
icant (α = 0.05) violations of linear model assumptions
were found.

Results

Demographics, cognitive measures and the mean GFC-R in-
dex values for the training and test sample are depicted in
Table 1. The GFC-R index was not related to age in both
samples.

GFC distribution

Figure 3 shows the spatial distribution of significant GFC
values in the brain displayed in percentiles for the training
(ADNI) and the test sample (ISD). We found a high spatial
correspondence of significant GFC values between both sam-
ples with a correlation coefficient of r=0.84, p<0.001. The
highest GFC values were observed predominantly within the
frontal cortex, lateral parietal cortex, and areas of the medial
brain surface. Those brain areas are known to be part of the
DMN and the cognitive control network as reported previous-
ly (Cole et al. 2010).
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The GFC-reserve index is decreased in MCI CR-
as compared to MCI CR+

MCI CR- showed significantly lower GFC-R index values
than the MCI CR+ subjects in the training sample
(F(7,35) = 17.82, p = 0.0001; see Fig. 4a) and the test sample
(F(6,16) = 7.50, p = 0.015). In an exploratory regression anal-
ysis in the training sample, we tested the association between
the global AV45 uptake, WMH volume and the GFC-R index
of the cognitive control network with age, gender, grey matter
volume of the cognitive control network and the RAVLT
learning score as covariates of no interest. The model showed
no significant relationship between AV45 and the GFC-R in-
dex or between WMH volume and the GFC-R index.
Similarly, in the test sample, WMH volume did not predict
the GFC-R index, controlling for age, gender, CERAD word
list learning and grey matter volume of the cognitive control
network.

ROC analysis

Using a ROC analysis, we evaluated how accurate the GFC-
reserve index discriminated between MCI CR+ and MCI CR-
subjects (Fig. 4b). The AUC was 0.840 with the 95 % CI
ranging between 0.72 and 0.95 within the training sample.
Similarly, in the test sample, we found a AUC of 0.79 with
the CI ranging from 0.60 to 0.99.

The GFC-reserve index is a predictor of CR proxies
in the ISD test sample

Using linear regression, we tested whether the GFC-R index
predicted CR proxies in the test sample, when controlling for
age, gender, the word list learning score of the CERAD bat-
tery, WHM volume and grey matter volume of the cognitive
control network. For years of education, the regression model
was significant (F(6,16) = 10.12, p = 0.0001) with an adjusted
R2 of 0.71, showing that a higher GFC-R index significantly
predicted higher years of education (t(16) = 2.225, p = 0.041).
For the CRIq score, a higher GFC-R index predicted a higher
CRIq score (t(16) = 2.581, p = 0.020, overall model fit:
F(6,16) = 3.498, p = 0.021, adjusted R2 0.41). The relationship
between the GFC-R index and the CR proxies is illustrated in
Fig. 5. When testing the Pearson-moment correlation between
the GFC-R index and our CR proxies, the correlation was
significant for both years of education (r = 0.46, p = 0.026)
and the CRIq (r = 0.6, p = 0.0024).

The GFC-reserve index is specific to CR proxies

In linear regression analyses, we tested whether the GFC-R
index is associated with better cognitive performance. We did
not find the GFC-R index to predict RAVLT learning (ADNI),
CERAD word list learning (ISD), or MMSE (ADNI & ISD)
scores, controlling for age, gender, WMH volume and grey
matter volume of the cognitive control network.

Table 1 Demographics and
neuropsychological
characteristics of the study
samples subjects split by
Diagnosis and CR group

Training sample (ADNI)

HC CR−
(n= 13)

HC CR+
(n= 11)

MCI CR−
(n= 24)

MCI CR+
(n= 19)

Age (years)a 75.12 ± 5.85 74.30 ± 7.56 74.90 ± 5.87 69.10 ± 6.16

Gender (female/male) 3/10 5/6 14/10 12/7

Educationb,c 15.15 ± 1.41 18.64 ± 1.12 14.17 ± 1.58 18.58 ± 1.02

Global AV45 Uptake 0.99 ± 0.45 0.98± 0.04 1.4 ± 0.18 1.37 0.15

MMSEa,c 29.12 ± 0.91 27.91 ± 1.45 26.71 ± 1.63 28.16 ± 1.34

RAVLT Learningb 45± 13.46 43.74 ± 7.81 31.71 ± 9.40 38.70 ± 8.91

Test sample (ISD)

HC CR−
(n= 17)

HC CR+
(n= 15)

MCI CR−
(n= 13)

MCI CR+
(n= 10)

Age (years) 70.17 ± 3.94 72.52 ± 6.33 77.02 ± 3.63 73.87 ± 4.23

Genderd (female/male) 13/4 5/10 11/2 8/2

Educationb,c 11.59 ± 1.33 16.6 ± 2.1 10.92 ± 1.98 17.1 ± 2.08

MMSEb 29.53 ± 0.87 29.33 ± 0.72 25.15 ± 1.52 27.9 ± 2.33

CERAD Word List
Learningb

23 2.6 24.07 3.24 13.3 2.84 18.9 3.14

aMCI CR+ < MCI CR−
bMCI CR+ > MCI CR−
c HC CR+ > HC CR−
d HC CR+ < HC CR−
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Control analyses in other brain networks

In order to test, whether our findings on the prediction of years
of education by GFC-R index were specific for the cognitive
control network, we repeated the regression analysis for GFC-
R index derived from each of seven other major cortical net-
works (Yeo et al. 2011). For none of the other networks, the
GFC-R index predicted years of education or the CRIq
(p > 0.05, Table 2). This suggests that the relationship between
GFC changes and education is specific for the cognitive con-
trol network.

Discussion

The first major finding of the current study was that MCI
subjects with high CR (as measured by years of education)

had an increased frequency of high GFC values within the
cognitive control network compared to MCI subjects with
lower years of education. Secondly, a newly derived summary
measure of abnormal GFC frequencies within the cognitive
control network, the GFC-R index, showed a linear associa-
tion with more years of education and a higher CRIq score, a
composite measure of CR, in an independent cross-validation
sample of MCI patients. The predictive value of GFC-R index
was independent of demographic variables including age and
gender, episodic memory performance, grey matter volume of
the cognitive control network or WMH volume as a proxy of
cerebral small vessel disease. These results suggest that the
GFC-R index constitutes a biomarker candidate of CR-related
functional brain changes in MCI.

For our first major finding, MCI CR+ showed a right-ward
shift of the GFC histogram to that in HC CR+, i.e. MCI CR+
showed an increased frequency of relatively high GFC values.
In contrast, there was a left-ward shift of the GFC histogram in
the MCI CR- group, i.e. an increased frequency of lower GFC
values. A previous study on GFC changes in MCI reported
decreased GFC in the frontal, parietal, and temporal cortices in
MCI (J. Wang et al. 2013). That latter study, however, did not
assess the impact of years of education on GFC differences.
Our results extend those previous results showing that the
levels of CR are an important modifying factor, where MCI
CR- subjects show a decrease in GFC but MCI CR+ subjects
show an increase in GFC within the cognitive control
network.

The increase in the frequency of high GFC values in MCI
CR+ may reflect either pre-existing high levels of GFC before
the development of MCI or, alternatively, a compensatory
increase in GFC during the development of MCI, or thirdly,
a dedifferentiation of functional connectivity that is related to
pathological brain changes (Cabeza et al. 2002; Jones et al.
2011). Previous studies showed that higher IQ is associated
with higher GFC within the left frontal core region of the
cognitive control network in young subjects (Cole et al.
2012). Given that years of education and IQ are correlated
(Matarazzo and Hermann 1984), it is possible that MCI CR+
subjects had already higher levels of GFC before disease on-
set, thus possessing higher brain reserve. However, the fact
that MCI CR+ subjects showed abnormally increased fre-
quency of high GFC values when compared to HC CR+, i.e.
at similarly high levels of education, suggests a compensatory
increase of GFC in MCI. Such an interpretation of compensa-
tory increase of GFC in MCI is consistent with several previ-
ous studies showing increased resting-state functional connec-
tivity in MCI and AD compared to HC (K. Wang et al. 2007),
that is attributable to higher levels of education (Bozzali et al.
2015). On the other hand, the lacking relationship between the
GFC-R index and cognitive performance partly challenge the
notion that GFC increases are compensatory. A third possible
explanation for an increase in GFC is a dedifferentiation of

Fig. 3 Distribution of significant GFC values in the brain. T-values of
voxel wise one-sample t-tests of the GFC among the pooled HC andMCI
subjects (FWE corrected at the voxel level at α= 0.001) were converted
to percentiles to facilitate visual group comparison between both samples
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functional connectivity due to pathological brain changes as
suggested previously (Cabeza et al. 2002; Jones et al. 2011).
However, we did not find GFC increases to be related to grey
matter atrophy, WMH volume or amyloid deposition. Thus,
our results indicate that the observed increase in GFC is un-
likely to reflect pathology-driven dedifferentiation of func-
tional connectivity. In summary, the MCI CR+ subjects

specifically show increased frequency of high GFC values
within the cognitive control network, which could reflect
compensatory changes in MCI, however this needs to be fur-
ther investigated by future studies.

For our second major finding, we could show in a cross-
validation approach that higher levels of the GFC-R index
allow accurate point prediction of higher levels of education

Fig. 4 a Boxplots of the GFC-R
index split by CR group for the
training and the test sample. MCI
CR- subjects show significantly
lower GFC-CR values as MCI
CR+ subjects in both samples. b
shows the ROC curves with the
specificity on the x- and the
sensitivity on the y-axis. AUC
Area under the curve,
* = p < 0.05, ** = p < 0.001

Fig. 5 Scatterplot for the
relationship between the GFC-R
index and the CR proxies (years
of education & CRIq) in the test
sample

Brain Imaging and Behavior (2017) 11:368–382 377



and CRIq in MCI and could well separate high vs. low edu-
cation groups in MCI as shown by the ROC analysis, with an
AUC of 0.79. Note however that sensitivity and specificity is
not of primary clinical significance in the context of CR,
which is likely to be continuously distributed. More impor-
tantly, the GFC-R index showed a significant linear relation-
ship with two different CR proxies in the validation sample.
The point prediction is difficult but clinically important as
previous studies showed that with each additional year of
education, the onset of dementia is delayed by 0.21 years
(Hall et al. 2007) and the risk of AD dementia is reduced
(Sando et al. 2008; Stern et al. 1994). A critical test in the
future will be whether the GFC-R index predicts slower cog-
nitive decline in subjects with preclinical AD or MCI as has
been reported for years of education as a proxy of CR (Soldan
et al. 2015). The advantage of using fMRI based CR bio-
markers such as GFC-R in such prediction models is that
GFC-R could be used as a measure to track CR changes over
time. CR may be reduced as the disease progresses since brain
pathology may eventually use up the reserve (Members et al.
2010). In contrast, proxies of CR such as education or occu-
pational attainment are time-invariant.

We found that only the GFC-R index derived from GFC
values within the cognitive control network but not within any
of the other major resting-state networks did significantly pre-
dict years of education or CRIq. For the ventral attention net-
work, we found a trend level association between the GFC-R
index and the CRIq, suggesting that the ventral attention net-
work is to a certain extent associated with CR-related GFC
increases. From a functional viewpoint, the ventral attention
network is hypothesized to be involved in attentional control
via coupling with other networks such as the dorsal attention
or cognitive control network (Vossel et al. 2014). Similar to
the cognitive control network, the ventral attention network

shows task-related hyperactivations in MCI and AD, as re-
vealed by a recent meta-analysis of task-fMRI studies (Li
et al. 2015). This suggests, that the ventral attention network
is potentially involved in compensatory brain changes in MCI
and AD. However, given that there was only a trend level
association with one of the two CR proxies tested, we think
that the role of the ventral attention network for the assessment
of CR-related brain changes is questionable and requires fur-
ther validation in future studies. Our results are broadly con-
sistent with previous findings showing that higher GFC of
brain regions in the cognitive control network but not the
default mode network were predictive of higher IQ in healthy
subjects (Cole et al. 2012). A possible explanation includes
that the cognitive control network has a unique role in the
brain, such that it is highly connected with the other networks
and may orchestrate the activation of other networks during
cognitive tasks (Cole et al. 2013, 2014b). Brain regions with
increased connectedness in the brain have previously shown
to be more resilient to targeted attacks as shown in graph
theoretical analysis of resting-state fMRI (Achard et al.
2006). Higher GFC of the cognitive control network may
enable to more flexibly activate different networks during
cognitive processing (Cole et al. 2013), which in neurodegen-
erative disease may render a more flexible coping with local
damage of specific neural networks such as the DMN
(Greicius et al. 2004; Mevel et al. 2011), thus increasing CR.
This will need to be tested in future combined resting-state and
task-related fMRI studies.

We used years of education as our primary outcome mea-
sure, i.e. the gold standard, since educational attainment has
been recommended as the best validated indicator of cognitive
reserve (Stern 2012). Years of education has been tested as a
CR proxy in numerous studies in AD (for review see (Stern
2012)) and is robustly associated with reduced risk of AD

Table 2 Control analyses of the GFC-R index as a predictor of CR proxies in major brain networks

Training sample (ADNI) Test sample (ISD)

Functional network GFC-Diff GFC-CR as a predictor of education in
MCI CR+ and CR− pooled1

GFC-CR as a predictor of CRIq
in MCI CR+ and CR− pooled1

CR+ < CR− CR+ > CR− T p T p

Cognitive control 0.2–0.26 0.34–0.5 2.225 0.041 2.581 0.020

Default mode 0.2–0.27 0.37–0.52 0.631 0.537 1.324 0.204

Dorsal attention 0.22–0.28 0.41–0.51 0.998 0.333 0.934 0.364

Ventral attention 0.19–0.23 0.3–0.5 0.885 0.389 1.767 0.096

Frontoparietal 0.2–0.27 0.35–0.52 1.284 0.216 1.635 0.122

Limbic 0.25 0.36–0.46 0.644 0.529 0.577 0.572

Visual 0.22–0.28 0.43–0.53 0.255 0.801 1.526 0.147

Somatomotor 0.21–0.28 0.32–0.46 1.078 0.30 0.995 0.335

1Models controlled for age, gender, WMH volume, grey matter volume of the tested network, CERAD Word list learning score
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dementia across studies (Meng and D’Arcy 2012; Valenzuela
and Sachdev 2006). Alternative proxy measures of CR in-
clude assessments such as occupational attainment, premorbid
IQ or leisure activities. Since we used international cross-
validation samples, equivalent measures of such variables
were not available in both samples in the current study.
However, in the test sample, we found a significant positive
association between the GFC-R index and the CRIq (Nucci
et al. 2012) an alternative CR proxy that takes into account
education, working and leisure activities, supporting criterion
validity of the GFC-R index.

A promising alternative marker of CR has been re-
cently proposed, consisting of the residual episodic
memory variability after accounting for brain atrophy
and demographic variables (Reed et al. 2010; Zahodne
et al. 2013, 2015). Such a measure captures well CR as
the discrepancy between the level of cognitive perfor-
mance and brain pathology, but is non-informative about
any structural or functional brain changes that may un-
derlie CR. The current GFC-R index captures functional
brain changes related to CR in MCI and would thus be
complimentary to such memory-variance based marker
or any of the standard proxy measures of CR.

For the interpretation of the current results several caveats
need to be taken into account. It is important to note that the
GFC-R index is not a biomarker candidate of CR per se, rather
it is a biomarker of functional brain changes that are associated
with CR in subjects with MCI. Ideally, the primary outcome
parameter for the validation of the current biomarker consti-
tute specific functional mechanisms that cause CR in MCI.
Although several task fMRI studies have attempted to extract
specific functional brain changes of CR in subjects with MCI
and AD, no core mechanism, however, has yet emerged (for
review see (Barulli and Stern 2013)). Thus, more work is
needed to disentangle the functional brain processes that un-
derlie CR, which could then provide a point of reference for
the validation of functional biomarkers of CR in MCI. Still,
years of education has been validated in numerous studies as a
marker of CR and may thus constitute the best primary out-
come as a reference measures for the validation of functional
biomarkers of CR at this point.

It should be also taken into account that the reliability of
GFC assessment is an important factor for the utility of GFC-
R as a CR biomarker in MCI. Previous studies showed that
GFC exhibits a fair to excellent test-retest reliability and its
retest reliability ranks among the highest of resting-state fMRI
functional connectivity measures (Liao et al. 2013; J. H.Wang
et al. 2011). Multicenter variability of resting-state fMRI is an
active field of research and needs still to be established for the
various connectivity indices including that of GFC. However,
the current cross-validation of the GFC-R between different
samples suggest robustness of the current findings (Feis et al.
2015). Moreover, both samples were scanned on different

scanners with different scanner protocols, but still results were
highly comparable. This favors the use of the GFC-R index as
a fMRI-based marker of CR in MCI that can be validly
assessed across sites and scanners. Summary indices that av-
erage across a large number of voxels such as the GFC-R
index may be more robust to multicenter variability than mea-
sures focusing on small ROIs (Ewers et al. 2006). Still, the
test-retest and multicenter variability of the GFC-R index
needs to be established in future studies, however, our analysis
renders the GFC-R index a promising candidate marker of CR
that can be robustly assessed across different scanner
protocols.

A strength of the current approach is the fully automated
way to extract GFC frequency changes in MCI based on
resting-state fMRI. Thus, functional MRI data can be assessed
without reliance on a task and data processing can be done
without manual intervention, which provides a high attractive-
ness to be used in clinical praxis. Possible clinical applications
of the GFC-R index as diagnostic biomarker candidate include
the use as an outcome measure in clinical trials such as cog-
nitive training, physical training that target compensatory
brain mechanisms to prevent conversion from MCI to AD
dementia (Suo et al. 2016). Secondly, the GFC-R index could
be used to track changes in CR during the progression of the
disease. Future longitudinal studies may address these next
steps.
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